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ABSTRACT: Functionality of amorphous multicomponent systems largely depends upon the
miscibility among components, especially in systems such as amorphous drugs and electrolytes. An
in-depth understanding of mixing behaviors of various constituents is necessitated. Here, we
applied the small- and wide-angle X-ray scattering (SWAXS) technique to monitor the mixing
behaviors in three typical glass-forming binary systems imposed by varied heat of mixing. It is
found that the Porod invariant (Q) determined at the glass transition temperature is remarkably
enhanced as the concentration fluctuation becomes intensified. Meanwhile, the deviation of Q
from the ideal mixing law is markedly weaken at elevated temperatures. The results
unambiguously suggest that the degree of concentration fluctuations in mixing systems can be
accurately quantified by the structural property, allowing the link to mixing thermodynamics.

The properties and performance of materials are
significantly tweaked when forming mixtures or solutions

with more components, especially in systems such as
amorphous drugs,1 liquid electrolytes,2 and alloys,3 where
serious concentration fluctuations would cause component
segregation and performance degradation.3−5 Therefore, it is
essential to have a better understanding of various behaviors in
mixing systems, which is highly relevant to the structures and
chemical properties of constituents. However, the knowledge
for the mixing behaviors is mainly based on indirect
measurements using properties such as heat of mixing ΔHmix,
reflecting the interactions between the unlike species,6,7 or,
dynamically, the width relaxation profile gauged by the non-
exponential factor (or stretching exponent) βKWW (0 < βKWW ≤
1) of structural α relaxation, which is crucial to address the
dynamic heterogeneity in glasses and supercooled liquids.8 The
dynamic parameter can be obtained by fitting the α-relaxation
dispersion using the Kohlrausch−Williams−Watts (KWW)
function, ϕ(t) = exp[−(t/τα)βKWW],9 where τα is the relaxation
time.10,11 However, the quantitative relationship between the
two parameters and the concentration fluctuations has not
been available, and direct access to concentration fluctuations
in mixing systems with higher accuracy still remains to be
clarified.
For decades, the small- and wide-angle X-ray scattering

(SWAXS) technique has been widely applied in many fields
involving the microscopic analysis of polymers,12,13 liquid
metals,14 glasses,15,16 and mesoporous materials,17 by focusing
on the electron density fluctuation in nanodomains to obtain
access to structural details on length scale from angstrom to
micrometer.17,18 Thereby, considerable knowledge of amor-
phous materials and liquids is captured, such as the nanosize
and surface morphology of polymers or proteins,12,13,19,20

liquid-phase transition of alcohols,21 crystallization degree of
CaCO3-saturated solutions,22 interactions of water in polymers
and ethanol solutions,23,24 and facets and layers of amorphous
materials.14,25,26

Recently, the studies of deep eutectic solvent systems27,28

indicate that the spatial distribution of ions and interactions of
electron density can be scrutinized by combining molecular
dynamics simulation with SWAXS techniques. Also, the
optimal extraction concentration in the extractant solvents
can be determined by SWAXS signals.29 The results suggest
that the technique can evaluate the interactions among
constituents by understanding how concentration fluctuates
in mixing systems. In this paper, we apply the SWAXS
technique to explore the mixing behaviors in three typical
glass-forming binary systems with different concentration
fluctuations, aiming at finding the way to accurately address
the mixing degree of solutions via the electron density
fluctuation.
Isomeric systems formed by mixing methyl m-toluate

(MMT) and methyl o-toluate (MOT) represent the nearly
ideal mixing systems, because our previous studies gave the
maximum heat of mixing ΔHmix to be as low as 11.7 J/mol30 as
a result of similar molecular structures and physical and
chemical properties, such as polarity.31 The mixtures
constituted by 2-picoline and triphenylethylene (TPE) are
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used to represent the moderately strong asymmetric systems,
because the two chemicals contain similar benzene rings in
structure but differ in their physical and chemical properties,
like molecular size and polarity. Obvious concentration
fluctuations have been detected in our recent studies using
dielectric and enthalpy relaxation measurements.32−34 Albeit
the ΔHmix value of the asymmetric systems is not accessible as
a result of the remarkable difference in melting points, it can be
evaluated by referring to binary systems of picoline with
chemicals with a structure similar to TPE. For example, ΔHmix
in the mixture of picoline (x = 0.5) and apolar meta/ortho-
xylene is 250 J/mol,35 and when increasing 10 carbon atoms in
the phenyl group to arrive at 1-phenyldecane, ΔHmix reaches
1200 J/mol.36 It is thus expected that ΔHmix between picoline
and TPE is 1 order of magnitude higher than the isomeric
MMT−MOT systems, reaching hundreds of joules per mole
(ΔHmix ∼ 102−103 J/mol). For an extremely strong
asymmetric system, the mixtures of tripropyl phosphate
(TPP)−polystyrene (PS) are the focus as a result of their
tremendous difference in both structure and chemistry. The
TPP molecule is polar and has a chain-like structure, while PS
is an apolar polymer built by benzene ring units with a high
molecular weight Mw of 2000. Two glass transition behaviors
have been featured in the binary systems.37 Studies of ΔHmix in
the mixtures of TPP with alkanes has shown extremely large
values. For example, when mixed with n-decane of finite
carbon number, ΔHmix reaches 1500 J/mol.38 Therefore, a very
positive and large ΔHmix is expected in the binary system of
TPP and PS, being 2 orders of magnitude higher than the
isomeric MMT−MOT systems, i.e., ΔHmix > 103 J/mol.
The SWAXS curves after denoising and smoothing are

shown in panels a−c of Figure 1 for three binary systems

MMT−MOT, picoline−TPE, and TPP−PS. The data process
and original data are available in Figures S1−S4 of the
Supporting Information. The mixtures were prepared accord-
ing to mass fractions. The SWAXS measurements are carried
out in the temperature range close to their respective glass
transition temperatures (Tg), when considering the two facts
that concentration fluctuations in mixtures can be markedly
enhanced at Tg

10,11,39,40 and liquid viscosity approaches a
nearly constant value of 1012 Pa s at Tg.

10,11 The molecular
structures of the constituents in the three systems are also

displayed in Figure 1, showing an increased degree of structural
asymmetry from left to right. When the three binary systems
are compared, only one scattering peak is observed in the
picoline−TPE mixtures, which is probably ascribed to the rigid
structure of picoline and TPE molecules, indicative of the
correlations among whole molecules. In contrast, the MMT−
MOT and TPP−PS systems have two and three peaks.
According to earlier studies,41 the multiple peak behaviors
stem from different types of intermolecular correlations and,
thus, occur preferentially in the flexible molecules with polar
functional groups. For the MMT−MOT system, the position
and intensity of the low-q peaks are basically unchanged, while
the high-q peak grows significantly with MMT, and the peak
position moves toward low q. Whereas the low-q peaks
correspond to the correlation generated by whole molecules,
the high-q peaks can be understood in terms of the correlation
caused by the ester group with a smaller coherent length.
Because the methyl group in MMT is located a bit further from
the ester group, the steric hindrance for the ester group is
weakened (i.e., from ortho to meta), giving rise to enhanced
intensity. The TPP−PS mixtures have two flexible molecules,
and in particular, PS with the high molecular weight has
various segmental movements as a result of its strong flexibility.
The peaks correspond to the correlations with different
coherence lengths.42

Figure S2 of the Supporting Information gives the
experimental results of picoline−TPE mixtures. The peak
intensity Imax increases with the TPE concentration, but the
peak positions change slightly. According to the relation
between the coherent length D and the scattering vector q, D =
2π/q, D ∼ 0.5 nm is determined for the picoline−TPE
mixtures, which agrees well with the reported values of
molecular liquids41 but is larger than those of metallic systems
of 0.2−0.3 nm.14,27

For the studies of small-angle X-ray scattering, Porod
invariant Q is a key parameter,43,44 because it quantifies the
fluctuation of electron density and relates to the entropy of the
systems.43,45,46 Therefore, invariant Q is expected to reflect the
concentration fluctuation at various mixing degrees. Invariant
Q is defined by the mean square of excessive scattering density

Q I q q q V( ) d 2
0

2 2 2∫ ρ ρ π= = ⟨ − ̅⟩
∞

(1)

where I(q) is the relative scattering intensity, q is the scattering
vector (q = 4π sin θ/λ, where 2θ is the scattering angle and λ is
the X-ray wavelength), ⟨ρ − ρ̅⟩ or Δρ is the electron density
difference, with ρ̅ being the average electron density of a
scattering bulk, and V is the scattering volume, which remains
roughly unchanged.44 Figure 2 shows calculated Q in terms of
eq 1 using the data in Figure 1 for the three binary systems by
choosing a representative I′(q) curve measured at specific
temperatures near their Tg values. The source data and
calculation process for all other concentrations are presented in
Figures S2−S5 of the Supporting Information.
Panels d−f of Figure 2 show the concentration dependence

of invariant Q for the mixtures. The dashed lines define ideal
Qideal derived on the basis of the ideal mixing law

Q Q x Q x(1 )ideal 1 2= + − (2)

where Q1 and Q2 are the invariants of pure phases A and B and
x is the mass fraction of phase A. Data for the crystallized
samples are marked by open symbols. Early studies used the
scattering peak to monitor the crystallization degree in

Figure 1. SWAXS curves near their glass transition temperatures of
the three binary systems: (a) MMT−MOT, (b) picoline−TPE, and
(c) TPP−PS. The molecular structures are shown.
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amorphous alloys,14 polymers, and proteins,47,48 showing that
the scattering areas do not change markedly upon crystal-
lization, indicative of comparable invariant Q between
crystalline and amorphous samples. For picoline (x = 0 and
0.25)−TPE, because it is highly difficult to be vitrified,
invariant Q calculated from the scattering areas of the
crystallized sample is used for comparison in Figure 2. It can
be seen that the MMT−MOT system basically coincides with
the ideal mixing line, while a large deviation occurs for both the
picoline−TPE and TPP−PS mixtures, where the binomial
fitting (red solid line) is used to show the degree of deviation
from the ideal mixing. The largest deviation occurs in the
TPP−PS system, consistent with its largest heat of mixing
among the three systems.
Figure 3 presents the temperature dependence of invariant

Q of picoline (x = 0.5 and 1)−TPE and TPP (x = 0.36 and
0.43)−PS systems in the glasses and supercooled liquids. The

temperature-dependent SWAXS data and integral of eq 1 are
available in Figures S6 and S7 of the Supporting Information,
showing a general tendency of decreased intensity with the
temperature. Above Tg, invariant Q of pure picoline changes
slightly with the temperature, as shown in Figure 3a, while a
rapid decrease can be seen in the picoline (x = 0.5)−TPE
mixture, as illustrated in Figure 3b, where the extrapolation of
Q gives Qideal ∼ 195 K. For the TPP−PS (x = 0.36) system
with two distinct Tg, it is seen in Figure 3c that invariant Q has
a tendency of an initial decrease followed by an increase from
low-temperature Tg to high-temperature Tg.
Concentration fluctuations in glass-forming mixtures have

been understood in a quantitative manner using the dynamic
stretching exponent βKWW of the structural relaxation,8,30,32,34

largely based on the connection of βKWW with dynamic
heterogeneity.10,31,49 Figure 3d presents a plot of Q normalized
by Qideal as a function of dielectric βKWW for the mixtures at
different temperatures and concentrations. The dielectric data
of three mixtures are obtained from refs 32−34. In general, Q/
Qideal decreases with βKWW, spanning nearly the whole
dynamics of βKWW from 0.2 to 1.50 In particular, for the
system with extremely low βKWW (∼0.2334), as detected in the
strongly asymmetric TPP−PS mixtures, high Q/Qideal values
are achieved and then decrease exponentially until they
become nearly constant.
To exhibit the deviation of invariant Q in the three systems

from the ideal mixing, the concentration dependence of Q/
Qideal is plotted in Figure 4. ΔHmix maxima for the three

systems are approximated by referring to the data reported in
refs 30, 36, and 38. It is easily observed that the deviation is
continuously enhanced, as ΔHmix increases from the MMT−
MOT mixtures with nearly ideal mixing to moderately
asymmetric picoline−TPE and, eventually, to the extremely
strongly asymmetric TPP−PS system.
On the basis of the heat of mixing ΔHmix together with the

stretching exponent βKWW, it is confirmed that the concen-
tration fluctuations become intensive from MMT−MOT to
TPP−PS systems. The MMT−MOT mixtures are composed
of isomeric molecules33 with negligible ΔHmix,

30 and therefore,
it is not a surprise to see Q obey the ideal mixing law. In
contrast, the picoline−TPE system has enhanced and positive
ΔHmix,

35,36 and a marked shift of Q/Qideal from the ideal mixing
line is obvious. Our recent studies of the picoline−TPE
mixtures indeed revealed some unusual dynamic behaviors,
such as Tg inconsistency of the dielectric and calorimetric
measurements and the remarkable deviation from the relation
of βKWW and nonlinear factor x established by generic glass-
forming liquids.32 The unusual behaviors are a direct

Figure 2. (a−c) Derivation of invariant Q and (d−f) concentration
dependence of Q for the three systems of MMT−MOT, picoline−
TPE, and TPP−PS. The dashed lines define Qideal in terms of the ideal
mixing law, and the red solid lines are the binomial fitting. The open
stars in panel e are from the crystallized samples.

Figure 3. Temperature dependence of invariant Q for (a) pure
picoline and binary (b) picoline−TPE and (c) TPP−PS mixtures.
The black dashed lines stand for Qideal calculated in terms of the ideal
mixing law, and the green dashed lines are the extrapolation. The
relation between invariant Q normalized by Qideal and stretching
exponent βKWW of the structural relaxation is shown in panel d. The
dielectric data of βKWW comes from refs 32−34. The blue dashed line
is a guide for the eye.

Figure 4. Concentration dependence of invariant Q normalized by
Qideal for the three binary systems of (a) MMT−MOT, (b) picoline−
TPE, and (c) TPP−PS. The dashed lines are from the binomial
fitting.
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consequence of the large concentration fluctuation of the
asymmetric systems.32,37,51 A large number of studies34,52 on
the TPP−PS mixtures also verified the nature of extremely
strong concentration fluctuations, featured by multiple
structural relaxations and glass transitions.34,37,52,53

The distinct Q deviation from the ideal mixing for the three
binary systems shown in Figures 2 and 4 verifies its strong
dependence of various mixing modes imposed by the increased
degree of concentration fluctuations. Moreover, the correlation
between Q/Qideal and βKWW plotted in Figure 3d suggests how
the dynamic heterogeneity and concentration fluctuation are
related. In addition, at high temperatures, enhanced dynamics
can be expected to lead inevitably to the weakening of
concentration fluctuations.34,37,47 This is supported by the
experimental observation, as exhibited in panels b and c of
Figure 3. The close relations of Q/Qideal with βKWW and ΔHmix
thus emphasize that the strong concentration fluctuations
cause a large difference of electron density distribution,
producing a high Q value shifting largely from Qideal.
Finally, the Ornstein−Zernike correlation length, which has

been used widely to study the density and concentration
fluctuations in solutions and polymeric blends on the basis of
the calculation of the low-angle scattering data,21,27 is also
examined in the present studies. Studies usually exhibit an
inflection in the log I − log q curves of SWAXS data at the low-
q regime (typically, q < 5 nm−1) to address long-range density
fluctuations.21,29 Unfortunately, no inflection point can be
observed for the present three mixing systems. Note that the
Ornstein−Zernike correlation length has been basically applied
in complex systems, such as spinodal decomposition and
liquid−liquid phase transitions,21,54 and thus, it might not work
out in small-molecule miscible systems to analyze the
concentration fluctuations.
In summary, the SWAXS signals are measured to study the

concentration fluctuations in three typical glass-forming binary
systems with increased difference in structures and chemical
properties, addressing various concentration fluctuations.
Strong concentration fluctuations are revealed in the system
with extremely large and positive heat of mixing ΔHmix. The
strong correlations of invariant Q at varied composition and
temperature with the kinetic stretching exponent and
thermodynamic ΔHmix are exhibited. Our results suggest that
invariant Q can quantitatively characterize the degree of the
concentration fluctuations in mixing systems.
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